Metamath Proof Explorer


Theorem nfrmowOLD

Description: Obsolete version of nfrmow as of 21-Nov-2024. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfreuw.1 _ x A
nfreuw.2 x φ
Assertion nfrmowOLD x * y A φ

Proof

Step Hyp Ref Expression
1 nfreuw.1 _ x A
2 nfreuw.2 x φ
3 df-rmo * y A φ * y y A φ
4 nftru y
5 nfcvd _ x y
6 1 a1i _ x A
7 5 6 nfeld x y A
8 2 a1i x φ
9 7 8 nfand x y A φ
10 4 9 nfmodv x * y y A φ
11 10 mptru x * y y A φ
12 3 11 nfxfr x * y A φ