Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrmowOLD
Metamath Proof Explorer
Description: Obsolete version of nfrmow as of 21-Nov-2024. (Contributed by NM , 16-Jun-2017) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfreuw.1
⊢ Ⅎ _ x A
nfreuw.2
⊢ Ⅎ x φ
Assertion
nfrmowOLD
⊢ Ⅎ x ∃ * y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
nfreuw.1
⊢ Ⅎ _ x A
2
nfreuw.2
⊢ Ⅎ x φ
3
df-rmo
⊢ ∃ * y ∈ A φ ↔ ∃ * y y ∈ A ∧ φ
4
nftru
⊢ Ⅎ y ⊤
5
nfcvd
⊢ ⊤ → Ⅎ _ x y
6
1
a1i
⊢ ⊤ → Ⅎ _ x A
7
5 6
nfeld
⊢ ⊤ → Ⅎ x y ∈ A
8
2
a1i
⊢ ⊤ → Ⅎ x φ
9
7 8
nfand
⊢ ⊤ → Ⅎ x y ∈ A ∧ φ
10
4 9
nfmodv
⊢ ⊤ → Ⅎ x ∃ * y y ∈ A ∧ φ
11
10
mptru
⊢ Ⅎ x ∃ * y y ∈ A ∧ φ
12
3 11
nfxfr
⊢ Ⅎ x ∃ * y ∈ A φ