Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfrmowOLD
Metamath Proof Explorer
Description: Obsolete version of nfrmow as of 21-Nov-2024. (Contributed by NM , 16-Jun-2017) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfreuw.1
⊢ Ⅎ 𝑥 𝐴
nfreuw.2
⊢ Ⅎ 𝑥 𝜑
Assertion
nfrmowOLD
⊢ Ⅎ 𝑥 ∃* 𝑦 ∈ 𝐴 𝜑
Proof
Step
Hyp
Ref
Expression
1
nfreuw.1
⊢ Ⅎ 𝑥 𝐴
2
nfreuw.2
⊢ Ⅎ 𝑥 𝜑
3
df-rmo
⊢ ( ∃* 𝑦 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) )
4
nftru
⊢ Ⅎ 𝑦 ⊤
5
nfcvd
⊢ ( ⊤ → Ⅎ 𝑥 𝑦 )
6
1
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 )
7
5 6
nfeld
⊢ ( ⊤ → Ⅎ 𝑥 𝑦 ∈ 𝐴 )
8
2
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝜑 )
9
7 8
nfand
⊢ ( ⊤ → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) )
10
4 9
nfmodv
⊢ ( ⊤ → Ⅎ 𝑥 ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) )
11
10
mptru
⊢ Ⅎ 𝑥 ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜑 )
12
3 11
nfxfr
⊢ Ⅎ 𝑥 ∃* 𝑦 ∈ 𝐴 𝜑