Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted existential uniqueness and at-most-one quantifier nfrmowOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfrmow  as of 21-Nov-2024.  (Contributed by NM , 16-Jun-2017)   (Revised by GG , 10-Jan-2024) 
       (Proof modification is discouraged.)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfreuwOLD.1 ⊢  Ⅎ  𝑥  𝐴   
					
						nfreuwOLD.2 ⊢  Ⅎ 𝑥  𝜑   
				
					Assertion 
					nfrmowOLD ⊢   Ⅎ 𝑥  ∃* 𝑦   ∈  𝐴  𝜑   
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfreuwOLD.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							nfreuwOLD.2 ⊢  Ⅎ 𝑥  𝜑   
						
							3 
								
							 
							df-rmo ⊢  ( ∃* 𝑦   ∈  𝐴  𝜑   ↔  ∃* 𝑦  ( 𝑦   ∈  𝐴   ∧  𝜑  ) )  
						
							4 
								
							 
							nftru ⊢  Ⅎ 𝑦  ⊤  
						
							5 
								
							 
							nfcvd ⊢  ( ⊤  →  Ⅎ  𝑥  𝑦  )  
						
							6 
								1 
							 
							a1i ⊢  ( ⊤  →  Ⅎ  𝑥  𝐴  )  
						
							7 
								5  6 
							 
							nfeld ⊢  ( ⊤  →  Ⅎ 𝑥  𝑦   ∈  𝐴  )  
						
							8 
								2 
							 
							a1i ⊢  ( ⊤  →  Ⅎ 𝑥  𝜑  )  
						
							9 
								7  8 
							 
							nfand ⊢  ( ⊤  →  Ⅎ 𝑥  ( 𝑦   ∈  𝐴   ∧  𝜑  ) )  
						
							10 
								4  9 
							 
							nfmodv ⊢  ( ⊤  →  Ⅎ 𝑥  ∃* 𝑦  ( 𝑦   ∈  𝐴   ∧  𝜑  ) )  
						
							11 
								10 
							 
							mptru ⊢  Ⅎ 𝑥  ∃* 𝑦  ( 𝑦   ∈  𝐴   ∧  𝜑  )  
						
							12 
								3  11 
							 
							nfxfr ⊢  Ⅎ 𝑥  ∃* 𝑦   ∈  𝐴  𝜑