Metamath Proof Explorer


Theorem nfsbc1d

Description: Deduction version of nfsbc1 . (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfsbc1d.2 φ_xA
Assertion nfsbc1d φx[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 nfsbc1d.2 φ_xA
2 df-sbc [˙A/x]˙ψAx|ψ
3 nfab1 _xx|ψ
4 3 a1i φ_xx|ψ
5 1 4 nfeld φxAx|ψ
6 2 5 nfxfrd φx[˙A/x]˙ψ