Metamath Proof Explorer


Theorem nfsbv

Description: If z is not free in ph , it is not free in [ y / x ] ph when z is distinct from x and y . Version of nfsb requiring more disjoint variables, but fewer axioms. (Contributed by Mario Carneiro, 11-Aug-2016) (Revised by Wolf Lammen, 7-Feb-2023) Remove disjoint variable condition on x , y . (Revised by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis nfsbv.nf z φ
Assertion nfsbv z y x φ

Proof

Step Hyp Ref Expression
1 nfsbv.nf z φ
2 df-sb y x φ w w = y x x = w φ
3 nfv z w = y
4 nfv z x = w
5 4 1 nfim z x = w φ
6 5 nfal z x x = w φ
7 3 6 nfim z w = y x x = w φ
8 7 nfal z w w = y x x = w φ
9 2 8 nfxfr z y x φ