Metamath Proof Explorer


Theorem nfsbvOLD

Description: Obsolete version of nfsbv as of 25-Oct-2024. (Contributed by Mario Carneiro, 11-Aug-2016) (Revised by Wolf Lammen, 7-Feb-2023) Remove disjoint variable condition on x , y . (Revised by Steven Nguyen, 13-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfsbv.nf zφ
Assertion nfsbvOLD zyxφ

Proof

Step Hyp Ref Expression
1 nfsbv.nf zφ
2 df-sb yxφww=yxx=wφ
3 nfv zw=y
4 nfv zx=w
5 4 1 nfim zx=wφ
6 5 nfal zxx=wφ
7 3 6 nfim zw=yxx=wφ
8 7 nfal zww=yxx=wφ
9 2 8 nfxfr zyxφ