Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				The difference, union, and intersection of two classes  
				The union of two classes  
				nfunOLD  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Obsolete version of nfun  as of 14-May-2025.  (Contributed by NM , 15-Sep-2003)   (Revised by Mario Carneiro , 14-Oct-2016) 
       (Proof modification is discouraged.)   (New usage is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						nfun.1  
						  ⊢    Ⅎ   _    x    A         
					 
					
						 
						 
						nfun.2  
						  ⊢    Ⅎ   _    x    B         
					 
				
					 
					Assertion 
					nfunOLD  
					  ⊢    Ⅎ   _    x     A  ∪  B            
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							nfun.1  
							   ⊢    Ⅎ   _    x    A         
						 
						
							2  
							
								
							 
							nfun.2  
							   ⊢    Ⅎ   _    x    B         
						 
						
							3  
							
								
							 
							df-un  
							   ⊢    A  ∪  B    =   y   |    y  ∈  A    ∨   y  ∈  B                 
						 
						
							4  
							
								1 
							 
							nfcri  
							   ⊢   Ⅎ  x     y  ∈  A           
						 
						
							5  
							
								2 
							 
							nfcri  
							   ⊢   Ⅎ  x     y  ∈  B           
						 
						
							6  
							
								4  5 
							 
							nfor  
							   ⊢   Ⅎ  x      y  ∈  A    ∨   y  ∈  B              
						 
						
							7  
							
								6 
							 
							nfab  
							   ⊢    Ⅎ   _    x     y   |    y  ∈  A    ∨   y  ∈  B                 
						 
						
							8  
							
								3  7 
							 
							nfcxfr  
							   ⊢    Ⅎ   _    x     A  ∪  B