Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The difference, union, and intersection of two classes The union of two classes nfunOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfun  as of 14-May-2025.  (Contributed by NM , 15-Sep-2003)   (Revised by Mario Carneiro , 14-Oct-2016) 
       (Proof modification is discouraged.)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfun.1   ⊢    Ⅎ   _  x  A       
					 
					
						nfun.2   ⊢    Ⅎ   _  x  B       
					 
				
					Assertion 
					nfunOLD   ⊢    Ⅎ   _  x   A  ∪  B        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfun.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							nfun.2  ⊢    Ⅎ   _  x  B       
						
							3 
								
							 
							df-un  ⊢    A  ∪  B    =   y   |    y  ∈  A    ∨   y  ∈  B           
						
							4 
								1 
							 
							nfcri  ⊢   Ⅎ  x   y  ∈  A         
						
							5 
								2 
							 
							nfcri  ⊢   Ⅎ  x   y  ∈  B         
						
							6 
								4  5 
							 
							nfor  ⊢   Ⅎ  x    y  ∈  A    ∨   y  ∈  B          
						
							7 
								6 
							 
							nfab  ⊢    Ⅎ   _  x   y   |    y  ∈  A    ∨   y  ∈  B           
						
							8 
								3  7 
							 
							nfcxfr  ⊢    Ⅎ   _  x   A  ∪  B