Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Well-ordered recursion nfwrecs  
				
		 
		
			
		 
		Description:   Bound-variable hypothesis builder for the well-ordered recursive
       function generator.  (Contributed by Scott Fenton , 9-Jun-2018)   (Proof
       shortened by Scott Fenton , 17-Nov-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfwrecs.1   ⊢    Ⅎ   _  x  R       
					 
					
						nfwrecs.2   ⊢    Ⅎ   _  x  A       
					 
					
						nfwrecs.3   ⊢    Ⅎ   _  x  F       
					 
				
					Assertion 
					nfwrecs   ⊢    Ⅎ   _  x   wrecs  ⁡   R  A  F           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfwrecs.1  ⊢    Ⅎ   _  x  R       
						
							2 
								
							 
							nfwrecs.2  ⊢    Ⅎ   _  x  A       
						
							3 
								
							 
							nfwrecs.3  ⊢    Ⅎ   _  x  F       
						
							4 
								
							 
							df-wrecs  ⊢    wrecs  ⁡   R  A  F      =   frecs  ⁡   R  A   F  ∘  2  nd            
						
							5 
								
							 
							nfcv  ⊢    Ⅎ   _  x  2  nd      
						
							6 
								3  5 
							 
							nfco  ⊢    Ⅎ   _  x   F  ∘  2  nd       
						
							7 
								1  2  6 
							 
							nffrecs  ⊢    Ⅎ   _  x   frecs  ⁡   R  A   F  ∘  2  nd            
						
							8 
								4  7 
							 
							nfcxfr  ⊢    Ⅎ   _  x   wrecs  ⁡   R  A  F