Metamath Proof Explorer


Theorem nffrecs

Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)

Ref Expression
Hypotheses nffrecs.1 _xR
nffrecs.2 _xA
nffrecs.3 _xF
Assertion nffrecs _xfrecsRAF

Proof

Step Hyp Ref Expression
1 nffrecs.1 _xR
2 nffrecs.2 _xA
3 nffrecs.3 _xF
4 df-frecs frecsRAF=f|yfFnyyAzyPredRAzyzyfz=zFfPredRAz
5 nfv xfFny
6 nfcv _xy
7 6 2 nfss xyA
8 nfcv _xz
9 1 2 8 nfpred _xPredRAz
10 9 6 nfss xPredRAzy
11 6 10 nfralw xzyPredRAzy
12 7 11 nfan xyAzyPredRAzy
13 nfcv _xf
14 13 9 nfres _xfPredRAz
15 8 3 14 nfov _xzFfPredRAz
16 15 nfeq2 xfz=zFfPredRAz
17 6 16 nfralw xzyfz=zFfPredRAz
18 5 12 17 nf3an xfFnyyAzyPredRAzyzyfz=zFfPredRAz
19 18 nfex xyfFnyyAzyPredRAzyzyfz=zFfPredRAz
20 19 nfab _xf|yfFnyyAzyPredRAzyzyfz=zFfPredRAz
21 20 nfuni _xf|yfFnyyAzyPredRAzyzyfz=zFfPredRAz
22 4 21 nfcxfr _xfrecsRAF