Metamath Proof Explorer


Theorem nfxp

Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfxp.1 _xA
nfxp.2 _xB
Assertion nfxp _xA×B

Proof

Step Hyp Ref Expression
1 nfxp.1 _xA
2 nfxp.2 _xB
3 df-xp A×B=yz|yAzB
4 1 nfcri xyA
5 2 nfcri xzB
6 4 5 nfan xyAzB
7 6 nfopab _xyz|yAzB
8 3 7 nfcxfr _xA×B