Metamath Proof Explorer


Theorem nimnbi

Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis nimnbi.1 ¬φψ
Assertion nimnbi ¬φψ

Proof

Step Hyp Ref Expression
1 nimnbi.1 ¬φψ
2 biimp φψφψ
3 1 2 mto ¬φψ