Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nimnbi.1 | |- -. ( ph -> ps ) |
|
Assertion | nimnbi | |- -. ( ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nimnbi.1 | |- -. ( ph -> ps ) |
|
2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
3 | 1 2 | mto | |- -. ( ph <-> ps ) |