Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nimnbi.1 | |- -. ( ph -> ps ) |
|
| Assertion | nimnbi | |- -. ( ph <-> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nimnbi.1 | |- -. ( ph -> ps ) |
|
| 2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 3 | 1 2 | mto | |- -. ( ph <-> ps ) |