Metamath Proof Explorer


Theorem nimnbi

Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis nimnbi.1 ¬ ( 𝜑𝜓 )
Assertion nimnbi ¬ ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 nimnbi.1 ¬ ( 𝜑𝜓 )
2 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
3 1 2 mto ¬ ( 𝜑𝜓 )