Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nimnbi.1 | ⊢ ¬ ( 𝜑 → 𝜓 ) | |
Assertion | nimnbi | ⊢ ¬ ( 𝜑 ↔ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nimnbi.1 | ⊢ ¬ ( 𝜑 → 𝜓 ) | |
2 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
3 | 1 2 | mto | ⊢ ¬ ( 𝜑 ↔ 𝜓 ) |