Metamath Proof Explorer


Theorem nlim2NEW

Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024) (Proof shortened by RP, 13-Dec-2024)

Ref Expression
Assertion nlim2NEW ¬Lim2𝑜

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 nlimsuc 1𝑜On¬Limsuc1𝑜
3 df-2o 2𝑜=suc1𝑜
4 limeq 2𝑜=suc1𝑜Lim2𝑜Limsuc1𝑜
5 3 4 ax-mp Lim2𝑜Limsuc1𝑜
6 2 5 sylnibr 1𝑜On¬Lim2𝑜
7 1 6 ax-mp ¬Lim2𝑜