Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024) (Proof shortened by RP, 13-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nlim2NEW | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on | |
|
2 | nlimsuc | |
|
3 | df-2o | |
|
4 | limeq | |
|
5 | 3 4 | ax-mp | |
6 | 2 5 | sylnibr | |
7 | 1 6 | ax-mp | |