Metamath Proof Explorer


Theorem nlimsuc

Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlimsuc A On ¬ Lim suc A

Proof

Step Hyp Ref Expression
1 sucidg A On A suc A
2 eloni A On Ord A
3 ordirr Ord A ¬ A A
4 2 3 syl A On ¬ A A
5 eleq2 suc A = A A suc A A A
6 5 notbid suc A = A ¬ A suc A ¬ A A
7 4 6 syl5ibrcom A On suc A = A ¬ A suc A
8 1 7 mt2d A On ¬ suc A = A
9 8 neqned A On suc A A
10 onunisuc A On suc A = A
11 9 10 neeqtrrd A On suc A suc A
12 11 neneqd A On ¬ suc A = suc A
13 12 intn3an3d A On ¬ Ord suc A suc A suc A = suc A
14 dflim2 Lim suc A Ord suc A suc A suc A = suc A
15 13 14 sylnibr A On ¬ Lim suc A