Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
nlimsuc
Next ⟩
nlim1NEW
Metamath Proof Explorer
Ascii
Unicode
Theorem
nlimsuc
Description:
A successor is not a limit ordinal.
(Contributed by
RP
, 13-Dec-2024)
Ref
Expression
Assertion
nlimsuc
⊢
A
∈
On
→
¬
Lim
⁡
suc
⁡
A
Proof
Step
Hyp
Ref
Expression
1
sucidg
⊢
A
∈
On
→
A
∈
suc
⁡
A
2
eloni
⊢
A
∈
On
→
Ord
⁡
A
3
ordirr
⊢
Ord
⁡
A
→
¬
A
∈
A
4
2
3
syl
⊢
A
∈
On
→
¬
A
∈
A
5
eleq2
⊢
suc
⁡
A
=
A
→
A
∈
suc
⁡
A
↔
A
∈
A
6
5
notbid
⊢
suc
⁡
A
=
A
→
¬
A
∈
suc
⁡
A
↔
¬
A
∈
A
7
4
6
syl5ibrcom
⊢
A
∈
On
→
suc
⁡
A
=
A
→
¬
A
∈
suc
⁡
A
8
1
7
mt2d
⊢
A
∈
On
→
¬
suc
⁡
A
=
A
9
8
neqned
⊢
A
∈
On
→
suc
⁡
A
≠
A
10
onunisuc
⊢
A
∈
On
→
⋃
suc
⁡
A
=
A
11
9
10
neeqtrrd
⊢
A
∈
On
→
suc
⁡
A
≠
⋃
suc
⁡
A
12
11
neneqd
⊢
A
∈
On
→
¬
suc
⁡
A
=
⋃
suc
⁡
A
13
12
intn3an3d
⊢
A
∈
On
→
¬
Ord
⁡
suc
⁡
A
∧
∅
∈
suc
⁡
A
∧
suc
⁡
A
=
⋃
suc
⁡
A
14
dflim2
⊢
Lim
⁡
suc
⁡
A
↔
Ord
⁡
suc
⁡
A
∧
∅
∈
suc
⁡
A
∧
suc
⁡
A
=
⋃
suc
⁡
A
15
13
14
sylnibr
⊢
A
∈
On
→
¬
Lim
⁡
suc
⁡
A