Metamath Proof Explorer


Theorem nlim1NEW

Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024) (Proof shortened by RP, 13-Dec-2024)

Ref Expression
Assertion nlim1NEW ¬ Lim 1 𝑜

Proof

Step Hyp Ref Expression
1 0elon On
2 nlimsuc On ¬ Lim suc
3 df-1o 1 𝑜 = suc
4 limeq 1 𝑜 = suc Lim 1 𝑜 Lim suc
5 3 4 ax-mp Lim 1 𝑜 Lim suc
6 2 5 sylnibr On ¬ Lim 1 𝑜
7 1 6 ax-mp ¬ Lim 1 𝑜