Metamath Proof Explorer


Theorem nlim1NEW

Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024) (Proof shortened by RP, 13-Dec-2024)

Ref Expression
Assertion nlim1NEW ¬ Lim 1o

Proof

Step Hyp Ref Expression
1 0elon ∅ ∈ On
2 nlimsuc ( ∅ ∈ On → ¬ Lim suc ∅ )
3 df-1o 1o = suc ∅
4 limeq ( 1o = suc ∅ → ( Lim 1o ↔ Lim suc ∅ ) )
5 3 4 ax-mp ( Lim 1o ↔ Lim suc ∅ )
6 2 5 sylnibr ( ∅ ∈ On → ¬ Lim 1o )
7 1 6 ax-mp ¬ Lim 1o