Step |
Hyp |
Ref |
Expression |
1 |
|
sucidg |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 ) |
2 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
3 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴 ) |
5 |
|
eleq2 |
⊢ ( suc 𝐴 = 𝐴 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴 ) ) |
6 |
5
|
notbid |
⊢ ( suc 𝐴 = 𝐴 → ( ¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
7 |
4 6
|
syl5ibrcom |
⊢ ( 𝐴 ∈ On → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴 ) ) |
8 |
1 7
|
mt2d |
⊢ ( 𝐴 ∈ On → ¬ suc 𝐴 = 𝐴 ) |
9 |
8
|
neqned |
⊢ ( 𝐴 ∈ On → suc 𝐴 ≠ 𝐴 ) |
10 |
|
onunisuc |
⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
11 |
9 10
|
neeqtrrd |
⊢ ( 𝐴 ∈ On → suc 𝐴 ≠ ∪ suc 𝐴 ) |
12 |
11
|
neneqd |
⊢ ( 𝐴 ∈ On → ¬ suc 𝐴 = ∪ suc 𝐴 ) |
13 |
12
|
intn3an3d |
⊢ ( 𝐴 ∈ On → ¬ ( Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴 ) ) |
14 |
|
dflim2 |
⊢ ( Lim suc 𝐴 ↔ ( Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴 ) ) |
15 |
13 14
|
sylnibr |
⊢ ( 𝐴 ∈ On → ¬ Lim suc 𝐴 ) |