Metamath Proof Explorer


Theorem nlimsuc

Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlimsuc ( 𝐴 ∈ On → ¬ Lim suc 𝐴 )

Proof

Step Hyp Ref Expression
1 sucidg ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 )
2 eloni ( 𝐴 ∈ On → Ord 𝐴 )
3 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
4 2 3 syl ( 𝐴 ∈ On → ¬ 𝐴𝐴 )
5 eleq2 ( suc 𝐴 = 𝐴 → ( 𝐴 ∈ suc 𝐴𝐴𝐴 ) )
6 5 notbid ( suc 𝐴 = 𝐴 → ( ¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴 ) )
7 4 6 syl5ibrcom ( 𝐴 ∈ On → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴 ) )
8 1 7 mt2d ( 𝐴 ∈ On → ¬ suc 𝐴 = 𝐴 )
9 8 neqned ( 𝐴 ∈ On → suc 𝐴𝐴 )
10 onunisuc ( 𝐴 ∈ On → suc 𝐴 = 𝐴 )
11 9 10 neeqtrrd ( 𝐴 ∈ On → suc 𝐴 suc 𝐴 )
12 11 neneqd ( 𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴 )
13 12 intn3an3d ( 𝐴 ∈ On → ¬ ( Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴 ) )
14 dflim2 ( Lim suc 𝐴 ↔ ( Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴 ) )
15 13 14 sylnibr ( 𝐴 ∈ On → ¬ Lim suc 𝐴 )