Metamath Proof Explorer


Theorem nlimsuc

Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlimsuc
|- ( A e. On -> -. Lim suc A )

Proof

Step Hyp Ref Expression
1 sucidg
 |-  ( A e. On -> A e. suc A )
2 eloni
 |-  ( A e. On -> Ord A )
3 ordirr
 |-  ( Ord A -> -. A e. A )
4 2 3 syl
 |-  ( A e. On -> -. A e. A )
5 eleq2
 |-  ( suc A = A -> ( A e. suc A <-> A e. A ) )
6 5 notbid
 |-  ( suc A = A -> ( -. A e. suc A <-> -. A e. A ) )
7 4 6 syl5ibrcom
 |-  ( A e. On -> ( suc A = A -> -. A e. suc A ) )
8 1 7 mt2d
 |-  ( A e. On -> -. suc A = A )
9 8 neqned
 |-  ( A e. On -> suc A =/= A )
10 onunisuc
 |-  ( A e. On -> U. suc A = A )
11 9 10 neeqtrrd
 |-  ( A e. On -> suc A =/= U. suc A )
12 11 neneqd
 |-  ( A e. On -> -. suc A = U. suc A )
13 12 intn3an3d
 |-  ( A e. On -> -. ( Ord suc A /\ (/) e. suc A /\ suc A = U. suc A ) )
14 dflim2
 |-  ( Lim suc A <-> ( Ord suc A /\ (/) e. suc A /\ suc A = U. suc A ) )
15 13 14 sylnibr
 |-  ( A e. On -> -. Lim suc A )