Step |
Hyp |
Ref |
Expression |
1 |
|
sucidg |
|- ( A e. On -> A e. suc A ) |
2 |
|
eloni |
|- ( A e. On -> Ord A ) |
3 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
4 |
2 3
|
syl |
|- ( A e. On -> -. A e. A ) |
5 |
|
eleq2 |
|- ( suc A = A -> ( A e. suc A <-> A e. A ) ) |
6 |
5
|
notbid |
|- ( suc A = A -> ( -. A e. suc A <-> -. A e. A ) ) |
7 |
4 6
|
syl5ibrcom |
|- ( A e. On -> ( suc A = A -> -. A e. suc A ) ) |
8 |
1 7
|
mt2d |
|- ( A e. On -> -. suc A = A ) |
9 |
8
|
neqned |
|- ( A e. On -> suc A =/= A ) |
10 |
|
onunisuc |
|- ( A e. On -> U. suc A = A ) |
11 |
9 10
|
neeqtrrd |
|- ( A e. On -> suc A =/= U. suc A ) |
12 |
11
|
neneqd |
|- ( A e. On -> -. suc A = U. suc A ) |
13 |
12
|
intn3an3d |
|- ( A e. On -> -. ( Ord suc A /\ (/) e. suc A /\ suc A = U. suc A ) ) |
14 |
|
dflim2 |
|- ( Lim suc A <-> ( Ord suc A /\ (/) e. suc A /\ suc A = U. suc A ) ) |
15 |
13 14
|
sylnibr |
|- ( A e. On -> -. Lim suc A ) |