Metamath Proof Explorer


Theorem nltmnf

Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion nltmnf A*¬A<−∞

Proof

Step Hyp Ref Expression
1 mnfnre −∞
2 1 neli ¬−∞
3 2 intnan ¬A−∞
4 3 intnanr ¬A−∞A<−∞
5 pnfnemnf +∞−∞
6 5 nesymi ¬−∞=+∞
7 6 intnan ¬A=−∞−∞=+∞
8 4 7 pm3.2ni ¬A−∞A<−∞A=−∞−∞=+∞
9 6 intnan ¬A−∞=+∞
10 2 intnan ¬A=−∞−∞
11 9 10 pm3.2ni ¬A−∞=+∞A=−∞−∞
12 8 11 pm3.2ni ¬A−∞A<−∞A=−∞−∞=+∞A−∞=+∞A=−∞−∞
13 mnfxr −∞*
14 ltxr A*−∞*A<−∞A−∞A<−∞A=−∞−∞=+∞A−∞=+∞A=−∞−∞
15 13 14 mpan2 A*A<−∞A−∞A<−∞A=−∞−∞=+∞A−∞=+∞A=−∞−∞
16 12 15 mtbiri A*¬A<−∞