Metamath Proof Explorer


Theorem nmlno0

Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmlno0.3 N = U normOp OLD W
nmlno0.0 Z = U 0 op W
nmlno0.7 L = U LnOp W
Assertion nmlno0 U NrmCVec W NrmCVec T L N T = 0 T = Z

Proof

Step Hyp Ref Expression
1 nmlno0.3 N = U normOp OLD W
2 nmlno0.0 Z = U 0 op W
3 nmlno0.7 L = U LnOp W
4 oveq1 U = if U NrmCVec U + × abs U LnOp W = if U NrmCVec U + × abs LnOp W
5 3 4 eqtrid U = if U NrmCVec U + × abs L = if U NrmCVec U + × abs LnOp W
6 5 eleq2d U = if U NrmCVec U + × abs T L T if U NrmCVec U + × abs LnOp W
7 oveq1 U = if U NrmCVec U + × abs U normOp OLD W = if U NrmCVec U + × abs normOp OLD W
8 1 7 eqtrid U = if U NrmCVec U + × abs N = if U NrmCVec U + × abs normOp OLD W
9 8 fveq1d U = if U NrmCVec U + × abs N T = if U NrmCVec U + × abs normOp OLD W T
10 9 eqeq1d U = if U NrmCVec U + × abs N T = 0 if U NrmCVec U + × abs normOp OLD W T = 0
11 oveq1 U = if U NrmCVec U + × abs U 0 op W = if U NrmCVec U + × abs 0 op W
12 2 11 eqtrid U = if U NrmCVec U + × abs Z = if U NrmCVec U + × abs 0 op W
13 12 eqeq2d U = if U NrmCVec U + × abs T = Z T = if U NrmCVec U + × abs 0 op W
14 10 13 bibi12d U = if U NrmCVec U + × abs N T = 0 T = Z if U NrmCVec U + × abs normOp OLD W T = 0 T = if U NrmCVec U + × abs 0 op W
15 6 14 imbi12d U = if U NrmCVec U + × abs T L N T = 0 T = Z T if U NrmCVec U + × abs LnOp W if U NrmCVec U + × abs normOp OLD W T = 0 T = if U NrmCVec U + × abs 0 op W
16 oveq2 W = if W NrmCVec W + × abs if U NrmCVec U + × abs LnOp W = if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs
17 16 eleq2d W = if W NrmCVec W + × abs T if U NrmCVec U + × abs LnOp W T if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs
18 oveq2 W = if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD W = if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs
19 18 fveq1d W = if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD W T = if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs T
20 19 eqeq1d W = if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD W T = 0 if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs T = 0
21 oveq2 W = if W NrmCVec W + × abs if U NrmCVec U + × abs 0 op W = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
22 21 eqeq2d W = if W NrmCVec W + × abs T = if U NrmCVec U + × abs 0 op W T = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
23 20 22 bibi12d W = if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD W T = 0 T = if U NrmCVec U + × abs 0 op W if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs T = 0 T = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
24 17 23 imbi12d W = if W NrmCVec W + × abs T if U NrmCVec U + × abs LnOp W if U NrmCVec U + × abs normOp OLD W T = 0 T = if U NrmCVec U + × abs 0 op W T if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs T = 0 T = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
25 eqid if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs = if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs
26 eqid if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
27 eqid if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs = if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs
28 elimnvu if U NrmCVec U + × abs NrmCVec
29 elimnvu if W NrmCVec W + × abs NrmCVec
30 25 26 27 28 29 nmlno0i T if U NrmCVec U + × abs LnOp if W NrmCVec W + × abs if U NrmCVec U + × abs normOp OLD if W NrmCVec W + × abs T = 0 T = if U NrmCVec U + × abs 0 op if W NrmCVec W + × abs
31 15 24 30 dedth2h U NrmCVec W NrmCVec T L N T = 0 T = Z
32 31 3impia U NrmCVec W NrmCVec T L N T = 0 T = Z