Metamath Proof Explorer


Theorem nmlno0i

Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmlno0.3 N = U normOp OLD W
nmlno0.0 Z = U 0 op W
nmlno0.7 L = U LnOp W
nmlno0i.u U NrmCVec
nmlno0i.w W NrmCVec
Assertion nmlno0i T L N T = 0 T = Z

Proof

Step Hyp Ref Expression
1 nmlno0.3 N = U normOp OLD W
2 nmlno0.0 Z = U 0 op W
3 nmlno0.7 L = U LnOp W
4 nmlno0i.u U NrmCVec
5 nmlno0i.w W NrmCVec
6 fveqeq2 T = if T L T Z N T = 0 N if T L T Z = 0
7 eqeq1 T = if T L T Z T = Z if T L T Z = Z
8 6 7 bibi12d T = if T L T Z N T = 0 T = Z N if T L T Z = 0 if T L T Z = Z
9 2 3 0lno U NrmCVec W NrmCVec Z L
10 4 5 9 mp2an Z L
11 10 elimel if T L T Z L
12 eqid BaseSet U = BaseSet U
13 eqid BaseSet W = BaseSet W
14 eqid 𝑠OLD U = 𝑠OLD U
15 eqid 𝑠OLD W = 𝑠OLD W
16 eqid 0 vec U = 0 vec U
17 eqid 0 vec W = 0 vec W
18 eqid norm CV U = norm CV U
19 eqid norm CV W = norm CV W
20 1 2 3 4 5 11 12 13 14 15 16 17 18 19 nmlno0lem N if T L T Z = 0 if T L T Z = Z
21 8 20 dedth T L N T = 0 T = Z