Metamath Proof Explorer


Theorem nmlno0i

Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmlno0.3 N=UnormOpOLDW
nmlno0.0 Z=U0opW
nmlno0.7 L=ULnOpW
nmlno0i.u UNrmCVec
nmlno0i.w WNrmCVec
Assertion nmlno0i TLNT=0T=Z

Proof

Step Hyp Ref Expression
1 nmlno0.3 N=UnormOpOLDW
2 nmlno0.0 Z=U0opW
3 nmlno0.7 L=ULnOpW
4 nmlno0i.u UNrmCVec
5 nmlno0i.w WNrmCVec
6 fveqeq2 T=ifTLTZNT=0NifTLTZ=0
7 eqeq1 T=ifTLTZT=ZifTLTZ=Z
8 6 7 bibi12d T=ifTLTZNT=0T=ZNifTLTZ=0ifTLTZ=Z
9 2 3 0lno UNrmCVecWNrmCVecZL
10 4 5 9 mp2an ZL
11 10 elimel ifTLTZL
12 eqid BaseSetU=BaseSetU
13 eqid BaseSetW=BaseSetW
14 eqid 𝑠OLDU=𝑠OLDU
15 eqid 𝑠OLDW=𝑠OLDW
16 eqid 0vecU=0vecU
17 eqid 0vecW=0vecW
18 eqid normCVU=normCVU
19 eqid normCVW=normCVW
20 1 2 3 4 5 11 12 13 14 15 16 17 18 19 nmlno0lem NifTLTZ=0ifTLTZ=Z
21 8 20 dedth TLNT=0T=Z