Metamath Proof Explorer


Definition df-0o

Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0o 0op=uNrmCVec,wNrmCVecBaseSetu×0vecw

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0o class0op
1 vu setvaru
2 cnv classNrmCVec
3 vw setvarw
4 cba classBaseSet
5 1 cv setvaru
6 5 4 cfv classBaseSetu
7 cn0v class0vec
8 3 cv setvarw
9 8 7 cfv class0vecw
10 9 csn class0vecw
11 6 10 cxp classBaseSetu×0vecw
12 1 3 2 2 11 cmpo classuNrmCVec,wNrmCVecBaseSetu×0vecw
13 0 12 wceq wff0op=uNrmCVec,wNrmCVecBaseSetu×0vecw