Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-0o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c0o | |
|
1 | vu | |
|
2 | cnv | |
|
3 | vw | |
|
4 | cba | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | cn0v | |
|
8 | 3 | cv | |
9 | 8 7 | cfv | |
10 | 9 | csn | |
11 | 6 10 | cxp | |
12 | 1 3 2 2 11 | cmpo | |
13 | 0 12 | wceq | |