Metamath Proof Explorer


Theorem nmval

Description: The value of the norm as the distance to zero. Problem 1 of Kreyszig p. 63. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmfval.n N=normW
nmfval.x X=BaseW
nmfval.z 0˙=0W
nmfval.d D=distW
Assertion nmval AXNA=AD0˙

Proof

Step Hyp Ref Expression
1 nmfval.n N=normW
2 nmfval.x X=BaseW
3 nmfval.z 0˙=0W
4 nmfval.d D=distW
5 oveq1 x=AxD0˙=AD0˙
6 1 2 3 4 nmfval N=xXxD0˙
7 ovex AD0˙V
8 5 6 7 fvmpt AXNA=AD0˙