| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | id |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 |  | id |  | 
						
							| 6 | 4 5 | eqeq12d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 |  | id |  | 
						
							| 9 | 7 8 | eqeq12d |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 |  | id |  | 
						
							| 12 | 10 11 | eqeq12d |  | 
						
							| 13 |  | 0elon |  | 
						
							| 14 |  | oa0 |  | 
						
							| 15 | 13 14 | ax-mp |  | 
						
							| 16 |  | peano1 |  | 
						
							| 17 |  | nnasuc |  | 
						
							| 18 | 16 17 | mpan |  | 
						
							| 19 |  | suceq |  | 
						
							| 20 | 19 | eqeq2d |  | 
						
							| 21 | 18 20 | syl5ibcom |  | 
						
							| 22 | 3 6 9 12 15 21 | finds |  |