Metamath Proof Explorer


Theorem nnm0r

Description: Multiplication with zero. Exercise 16 of Enderton p. 82. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnm0r Aω𝑜A=

Proof

Step Hyp Ref Expression
1 oveq2 x=𝑜x=𝑜
2 1 eqeq1d x=𝑜x=𝑜=
3 oveq2 x=y𝑜x=𝑜y
4 3 eqeq1d x=y𝑜x=𝑜y=
5 oveq2 x=sucy𝑜x=𝑜sucy
6 5 eqeq1d x=sucy𝑜x=𝑜sucy=
7 oveq2 x=A𝑜x=𝑜A
8 7 eqeq1d x=A𝑜x=𝑜A=
9 0elon On
10 om0 On𝑜=
11 9 10 ax-mp 𝑜=
12 oveq1 𝑜y=𝑜y+𝑜=+𝑜
13 oa0 On+𝑜=
14 9 13 ax-mp +𝑜=
15 12 14 eqtrdi 𝑜y=𝑜y+𝑜=
16 peano1 ω
17 nnmsuc ωyω𝑜sucy=𝑜y+𝑜
18 16 17 mpan yω𝑜sucy=𝑜y+𝑜
19 18 eqeq1d yω𝑜sucy=𝑜y+𝑜=
20 15 19 imbitrrid yω𝑜y=𝑜sucy=
21 2 4 6 8 11 20 finds Aω𝑜A=