Metamath Proof Explorer


Theorem nnaordr

Description: Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002)

Ref Expression
Assertion nnaordr AωBωCωABA+𝑜CB+𝑜C

Proof

Step Hyp Ref Expression
1 nnaord AωBωCωABC+𝑜AC+𝑜B
2 nnacom CωAωC+𝑜A=A+𝑜C
3 2 ancoms AωCωC+𝑜A=A+𝑜C
4 3 3adant2 AωBωCωC+𝑜A=A+𝑜C
5 nnacom CωBωC+𝑜B=B+𝑜C
6 5 ancoms BωCωC+𝑜B=B+𝑜C
7 6 3adant1 AωBωCωC+𝑜B=B+𝑜C
8 4 7 eleq12d AωBωCωC+𝑜AC+𝑜BA+𝑜CB+𝑜C
9 1 8 bitrd AωBωCωABA+𝑜CB+𝑜C