Metamath Proof Explorer


Theorem normsqi

Description: The square of a norm. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypothesis normcl.1 A
Assertion normsqi normA2=AihA

Proof

Step Hyp Ref Expression
1 normcl.1 A
2 normval AnormA=AihA
3 1 2 ax-mp normA=AihA
4 3 oveq1i normA2=AihA2
5 hiidge0 A0AihA
6 1 5 ax-mp 0AihA
7 hiidrcl AAihA
8 1 7 ax-mp AihA
9 8 sqsqrti 0AihAAihA2=AihA
10 6 9 ax-mp AihA2=AihA
11 4 10 eqtri normA2=AihA