Metamath Proof Explorer


Theorem normsub0

Description: Two vectors are equal iff the norm of their difference is zero. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion normsub0 ABnormA-B=0A=B

Proof

Step Hyp Ref Expression
1 fvoveq1 A=ifAA0normA-B=normifAA0-B
2 1 eqeq1d A=ifAA0normA-B=0normifAA0-B=0
3 eqeq1 A=ifAA0A=BifAA0=B
4 2 3 bibi12d A=ifAA0normA-B=0A=BnormifAA0-B=0ifAA0=B
5 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
6 5 fveqeq2d B=ifBB0normifAA0-B=0normifAA0-ifBB0=0
7 eqeq2 B=ifBB0ifAA0=BifAA0=ifBB0
8 6 7 bibi12d B=ifBB0normifAA0-B=0ifAA0=BnormifAA0-ifBB0=0ifAA0=ifBB0
9 ifhvhv0 ifAA0
10 ifhvhv0 ifBB0
11 9 10 normsub0i normifAA0-ifBB0=0ifAA0=ifBB0
12 4 8 11 dedth2h ABnormA-B=0A=B