Metamath Proof Explorer


Theorem notabw

Description: A class abstraction defined by a negation. Version of notab using implicit substitution, which does not require ax-10 , ax-12 . (Contributed by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis notabw.1 x=yφψ
Assertion notabw x|¬φ=Vy|ψ

Proof

Step Hyp Ref Expression
1 notabw.1 x=yφψ
2 vex xV
3 2 biantrur ¬xy|ψxV¬xy|ψ
4 df-clab xy|ψxyψ
5 1 bicomd x=yψφ
6 5 equcoms y=xψφ
7 6 sbievw xyψφ
8 4 7 bitri xy|ψφ
9 3 8 xchnxbi ¬φxV¬xy|ψ
10 9 abbii x|¬φ=x|xV¬xy|ψ
11 df-dif Vy|ψ=x|xV¬xy|ψ
12 10 11 eqtr4i x|¬φ=Vy|ψ