Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal numbers: Induction and recursion on two variables
noxpordpo
Metamath Proof Explorer
Description: To get through most of the textbook defintions in surreal numbers we
will need recursion on two variables. This set of theorems sets up the
preconditions for double recursion. This theorem establishes the
partial ordering. (Contributed by Scott Fenton , 19-Aug-2024)
Ref
Expression
Hypotheses
noxpord.1
⊢ R = a b | a ∈ L ⁡ b ∪ R ⁡ b
noxpord.2
⊢ S = x y | x ∈ No × No ∧ y ∈ No × No ∧ 1 st ⁡ x R 1 st ⁡ y ∨ 1 st ⁡ x = 1 st ⁡ y ∧ 2 nd ⁡ x R 2 nd ⁡ y ∨ 2 nd ⁡ x = 2 nd ⁡ y ∧ x ≠ y
Assertion
noxpordpo
⊢ S Po No × No
Proof
Step
Hyp
Ref
Expression
1
noxpord.1
⊢ R = a b | a ∈ L ⁡ b ∪ R ⁡ b
2
noxpord.2
⊢ S = x y | x ∈ No × No ∧ y ∈ No × No ∧ 1 st ⁡ x R 1 st ⁡ y ∨ 1 st ⁡ x = 1 st ⁡ y ∧ 2 nd ⁡ x R 2 nd ⁡ y ∨ 2 nd ⁡ x = 2 nd ⁡ y ∧ x ≠ y
3
1
lrrecpo
⊢ R Po No
4
3
a1i
⊢ ⊤ → R Po No
5
2 4 4
poxp2
⊢ ⊤ → S Po No × No
6
5
mptru
⊢ S Po No × No