Metamath Proof Explorer


Theorem nrmo

Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypothesis nrmo.1 xA¬φ
Assertion nrmo *xAφ

Proof

Step Hyp Ref Expression
1 nrmo.1 xA¬φ
2 mofal *x
3 1 imori ¬xA¬φ
4 ianor ¬xAφ¬xA¬φ
5 3 4 mpbir ¬xAφ
6 5 bifal xAφ
7 6 mobii *xxAφ*x
8 2 7 mpbir *xxAφ
9 df-rmo *xAφ*xxAφ
10 8 9 mpbir *xAφ