Metamath Proof Explorer
Description: "At most one" restricted existential quantifier for a statement which is
never true. (Contributed by Thierry Arnoux, 27-Nov-2023)
|
|
Ref |
Expression |
|
Hypothesis |
nrmo.1 |
⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) |
|
Assertion |
nrmo |
⊢ ∃* 𝑥 ∈ 𝐴 𝜑 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrmo.1 |
⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) |
| 2 |
|
mofal |
⊢ ∃* 𝑥 ⊥ |
| 3 |
1
|
imori |
⊢ ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑 ) |
| 4 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑 ) ) |
| 5 |
3 4
|
mpbir |
⊢ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 6 |
5
|
bifal |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ⊥ ) |
| 7 |
6
|
mobii |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ⊥ ) |
| 8 |
2 7
|
mpbir |
⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 9 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 10 |
8 9
|
mpbir |
⊢ ∃* 𝑥 ∈ 𝐴 𝜑 |