Metamath Proof Explorer


Theorem nsyl3

Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995)

Ref Expression
Hypotheses nsyl3.1 φ¬ψ
nsyl3.2 χψ
Assertion nsyl3 χ¬φ

Proof

Step Hyp Ref Expression
1 nsyl3.1 φ¬ψ
2 nsyl3.2 χψ
3 1 a1i χφ¬ψ
4 2 3 mt2d χ¬φ