Metamath Proof Explorer


Theorem numclwlk2lem2fv

Description: Value of the function R . (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 31-May-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses numclwwlk.v V=VtxG
numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
numclwwlk.h H=vV,n2wvClWWalksNOnGn|wn2v
numclwwlk.r R=xXHN+2xprefixN+1
Assertion numclwlk2lem2fv XVNWXHN+2RW=WprefixN+1

Proof

Step Hyp Ref Expression
1 numclwwlk.v V=VtxG
2 numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
3 numclwwlk.h H=vV,n2wvClWWalksNOnGn|wn2v
4 numclwwlk.r R=xXHN+2xprefixN+1
5 oveq1 x=WxprefixN+1=WprefixN+1
6 simpr XVNWXHN+2WXHN+2
7 ovexd XVNWXHN+2WprefixN+1V
8 4 5 6 7 fvmptd3 XVNWXHN+2RW=WprefixN+1
9 8 ex XVNWXHN+2RW=WprefixN+1