| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk.v |
|- V = ( Vtx ` G ) |
| 2 |
|
numclwwlk.q |
|- Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) |
| 3 |
|
numclwwlk.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
| 4 |
|
numclwwlk.r |
|- R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) ) |
| 5 |
|
oveq1 |
|- ( x = W -> ( x prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) ) |
| 6 |
|
simpr |
|- ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> W e. ( X H ( N + 2 ) ) ) |
| 7 |
|
ovexd |
|- ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> ( W prefix ( N + 1 ) ) e. _V ) |
| 8 |
4 5 6 7
|
fvmptd3 |
|- ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> ( R ` W ) = ( W prefix ( N + 1 ) ) ) |
| 9 |
8
|
ex |
|- ( ( X e. V /\ N e. NN ) -> ( W e. ( X H ( N + 2 ) ) -> ( R ` W ) = ( W prefix ( N + 1 ) ) ) ) |