| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 |  | numclwwlk.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 4 |  | numclwwlk.r |  |-  R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) ) | 
						
							| 5 |  | eleq1w |  |-  ( y = x -> ( y e. ( X H ( N + 2 ) ) <-> x e. ( X H ( N + 2 ) ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( y = x -> ( R ` y ) = ( R ` x ) ) | 
						
							| 7 |  | oveq1 |  |-  ( y = x -> ( y prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( y = x -> ( ( R ` y ) = ( y prefix ( N + 1 ) ) <-> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 9 | 5 8 | imbi12d |  |-  ( y = x -> ( ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) <-> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( y = x -> ( ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) ) <-> ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) ) ) | 
						
							| 11 | 1 2 3 4 | numclwlk2lem2fv |  |-  ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) ) | 
						
							| 12 | 10 11 | chvarvv |  |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) | 
						
							| 15 | 1 2 3 4 | numclwlk2lem2f |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) --> ( X Q N ) ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) e. ( X Q N ) ) | 
						
							| 17 | 14 16 | eqeltrrd |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) e. ( X Q N ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) ) | 
						
							| 19 | 1 2 3 | numclwwlk2lem1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) | 
						
							| 21 | 1 2 | numclwwlkovq |  |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 22 | 21 | eleq2d |  |-  ( ( X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
							| 23 | 22 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
							| 24 |  | fveq1 |  |-  ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( w = u -> ( ( w ` 0 ) = X <-> ( u ` 0 ) = X ) ) | 
						
							| 26 |  | fveq2 |  |-  ( w = u -> ( lastS ` w ) = ( lastS ` u ) ) | 
						
							| 27 | 26 | neeq1d |  |-  ( w = u -> ( ( lastS ` w ) =/= X <-> ( lastS ` u ) =/= X ) ) | 
						
							| 28 | 25 27 | anbi12d |  |-  ( w = u -> ( ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) <-> ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) | 
						
							| 29 | 28 | elrab |  |-  ( u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) | 
						
							| 30 | 23 29 | bitrdi |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) ) | 
						
							| 31 |  | wwlknbp1 |  |-  ( u e. ( N WWalksN G ) -> ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) | 
						
							| 32 |  | 3simpc |  |-  ( ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( u e. ( N WWalksN G ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) | 
						
							| 34 | 1 | wrdeqi |  |-  Word V = Word ( Vtx ` G ) | 
						
							| 35 | 34 | eleq2i |  |-  ( u e. Word V <-> u e. Word ( Vtx ` G ) ) | 
						
							| 36 | 35 | anbi1i |  |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) <-> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) | 
						
							| 37 | 33 36 | sylibr |  |-  ( u e. ( N WWalksN G ) -> ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) ) | 
						
							| 38 |  | simpll |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> u e. Word V ) | 
						
							| 39 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 40 |  | 2nn |  |-  2 e. NN | 
						
							| 41 | 40 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 42 | 41 | nnzd |  |-  ( N e. NN -> 2 e. ZZ ) | 
						
							| 43 |  | nn0pzuz |  |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 44 | 39 42 43 | syl2anc |  |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 45 | 3 | numclwwlkovh |  |-  ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
							| 46 | 44 45 | sylan2 |  |-  ( ( X e. V /\ N e. NN ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
							| 47 | 46 | eleq2d |  |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) | 
						
							| 48 |  | fveq1 |  |-  ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) | 
						
							| 49 | 48 | eqeq1d |  |-  ( w = x -> ( ( w ` 0 ) = X <-> ( x ` 0 ) = X ) ) | 
						
							| 50 |  | fveq1 |  |-  ( w = x -> ( w ` ( ( N + 2 ) - 2 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) ) | 
						
							| 51 | 50 48 | neeq12d |  |-  ( w = x -> ( ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) <-> ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) | 
						
							| 52 | 49 51 | anbi12d |  |-  ( w = x -> ( ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) <-> ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) | 
						
							| 53 | 52 | elrab |  |-  ( x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) | 
						
							| 54 | 47 53 | bitrdi |  |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) | 
						
							| 55 | 54 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) | 
						
							| 57 | 1 | clwwlknbp |  |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) ) | 
						
							| 58 |  | lencl |  |-  ( u e. Word V -> ( # ` u ) e. NN0 ) | 
						
							| 59 |  | simprr |  |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> x e. Word V ) | 
						
							| 60 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 61 | 60 | a1i |  |-  ( N e. NN -> 2 = ( 1 + 1 ) ) | 
						
							| 62 | 61 | oveq2d |  |-  ( N e. NN -> ( N + 2 ) = ( N + ( 1 + 1 ) ) ) | 
						
							| 63 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 64 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 65 | 63 64 64 | addassd |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) | 
						
							| 66 | 62 65 | eqtr4d |  |-  ( N e. NN -> ( N + 2 ) = ( ( N + 1 ) + 1 ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( N + 2 ) = ( ( N + 1 ) + 1 ) ) | 
						
							| 68 | 67 | eqeq2d |  |-  ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( ( # ` x ) = ( N + 2 ) <-> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 69 | 68 | biimpcd |  |-  ( ( # ` x ) = ( N + 2 ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) | 
						
							| 71 | 70 | impcom |  |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) | 
						
							| 72 |  | oveq1 |  |-  ( ( # ` u ) = ( N + 1 ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) ) | 
						
							| 73 | 72 | ad3antlr |  |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) ) | 
						
							| 74 | 71 73 | eqtr4d |  |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( # ` u ) + 1 ) ) | 
						
							| 75 | 59 74 | jca |  |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) | 
						
							| 76 | 75 | exp31 |  |-  ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 77 | 58 76 | sylan |  |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 78 | 77 | com12 |  |-  ( N e. NN -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 79 | 78 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 80 | 79 | impcom |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 81 | 80 | com12 |  |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 82 | 81 | ancoms |  |-  ( ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 83 | 57 82 | syl |  |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 85 | 84 | com12 |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 86 | 56 85 | sylbid |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 87 | 86 | ralrimiv |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) | 
						
							| 88 | 38 87 | jca |  |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 89 | 88 | ex |  |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 90 | 37 89 | syl |  |-  ( u e. ( N WWalksN G ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) | 
						
							| 92 | 91 | imp |  |-  ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) | 
						
							| 93 |  | nfcv |  |-  F/_ v X | 
						
							| 94 |  | nfmpo1 |  |-  F/_ v ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 95 | 3 94 | nfcxfr |  |-  F/_ v H | 
						
							| 96 |  | nfcv |  |-  F/_ v ( N + 2 ) | 
						
							| 97 | 93 95 96 | nfov |  |-  F/_ v ( X H ( N + 2 ) ) | 
						
							| 98 | 97 | reuccatpfxs1 |  |-  ( ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) | 
						
							| 99 | 92 98 | syl |  |-  ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) | 
						
							| 100 | 99 | imp |  |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) | 
						
							| 101 | 31 | simp3d |  |-  ( u e. ( N WWalksN G ) -> ( # ` u ) = ( N + 1 ) ) | 
						
							| 102 | 101 | eqcomd |  |-  ( u e. ( N WWalksN G ) -> ( N + 1 ) = ( # ` u ) ) | 
						
							| 103 | 102 | ad4antr |  |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( N + 1 ) = ( # ` u ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) = ( x prefix ( # ` u ) ) ) | 
						
							| 105 | 104 | eqeq2d |  |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( u = ( x prefix ( N + 1 ) ) <-> u = ( x prefix ( # ` u ) ) ) ) | 
						
							| 106 | 105 | reubidva |  |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> ( E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) <-> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) | 
						
							| 107 | 100 106 | mpbird |  |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) | 
						
							| 108 | 107 | exp31 |  |-  ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 109 | 108 | com12 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 110 | 30 109 | sylbid |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 111 | 110 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 112 | 20 111 | mpd |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) | 
						
							| 113 | 112 | ralrimiva |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) | 
						
							| 114 | 4 | f1ompt |  |-  ( R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) <-> ( A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) /\ A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) | 
						
							| 115 | 18 113 114 | sylanbrc |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) ) |