| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 |  | numclwwlk.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 4 |  | numclwwlk.r |  |-  R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) ) | 
						
							| 5 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 6 |  | 2z |  |-  2 e. ZZ | 
						
							| 7 | 6 | a1i |  |-  ( N e. NN -> 2 e. ZZ ) | 
						
							| 8 |  | nn0pzuz |  |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 9 | 5 7 8 | syl2anc |  |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 10 | 9 | anim2i |  |-  ( ( X e. V /\ N e. NN ) -> ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 12 | 3 | numclwwlkovh |  |-  ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
							| 13 | 12 | eleq2d |  |-  ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( x e. ( X H ( N + 2 ) ) <-> x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) | 
						
							| 15 |  | fveq1 |  |-  ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( w = x -> ( ( w ` 0 ) = X <-> ( x ` 0 ) = X ) ) | 
						
							| 17 |  | fveq1 |  |-  ( w = x -> ( w ` ( ( N + 2 ) - 2 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) ) | 
						
							| 18 | 17 15 | neeq12d |  |-  ( w = x -> ( ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) <-> ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) | 
						
							| 19 | 16 18 | anbi12d |  |-  ( w = x -> ( ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) <-> ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) | 
						
							| 20 | 19 | elrab |  |-  ( x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) | 
						
							| 21 | 14 20 | bitrdi |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) | 
						
							| 22 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 23 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 24 | 23 7 | zaddcld |  |-  ( N e. NN -> ( N + 2 ) e. ZZ ) | 
						
							| 25 |  | uzid |  |-  ( ( N + 2 ) e. ZZ -> ( N + 2 ) e. ( ZZ>= ` ( N + 2 ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` ( N + 2 ) ) ) | 
						
							| 27 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 28 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 29 | 27 28 28 | addassd |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) | 
						
							| 30 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 31 | 30 | a1i |  |-  ( N e. NN -> ( 1 + 1 ) = 2 ) | 
						
							| 32 | 31 | oveq2d |  |-  ( N e. NN -> ( N + ( 1 + 1 ) ) = ( N + 2 ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( N e. NN -> ( ZZ>= ` ( ( N + 1 ) + 1 ) ) = ( ZZ>= ` ( N + 2 ) ) ) | 
						
							| 35 | 26 34 | eleqtrrd |  |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` ( ( N + 1 ) + 1 ) ) ) | 
						
							| 36 | 22 35 | jca |  |-  ( N e. NN -> ( ( N + 1 ) e. NN /\ ( N + 2 ) e. ( ZZ>= ` ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 37 | 36 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( N + 1 ) e. NN /\ ( N + 2 ) e. ( ZZ>= ` ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( N + 1 ) e. NN /\ ( N + 2 ) e. ( ZZ>= ` ( ( N + 1 ) + 1 ) ) ) ) | 
						
							| 39 |  | simprl |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> x e. ( ( N + 2 ) ClWWalksN G ) ) | 
						
							| 40 |  | wwlksubclwwlk |  |-  ( ( ( N + 1 ) e. NN /\ ( N + 2 ) e. ( ZZ>= ` ( ( N + 1 ) + 1 ) ) ) -> ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( x prefix ( N + 1 ) ) e. ( ( ( N + 1 ) - 1 ) WWalksN G ) ) ) | 
						
							| 41 | 38 39 40 | sylc |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( x prefix ( N + 1 ) ) e. ( ( ( N + 1 ) - 1 ) WWalksN G ) ) | 
						
							| 42 |  | pncan1 |  |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 43 | 42 | eqcomd |  |-  ( N e. CC -> N = ( ( N + 1 ) - 1 ) ) | 
						
							| 44 | 27 43 | syl |  |-  ( N e. NN -> N = ( ( N + 1 ) - 1 ) ) | 
						
							| 45 | 44 | oveq1d |  |-  ( N e. NN -> ( N WWalksN G ) = ( ( ( N + 1 ) - 1 ) WWalksN G ) ) | 
						
							| 46 | 45 | eleq2d |  |-  ( N e. NN -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) <-> ( x prefix ( N + 1 ) ) e. ( ( ( N + 1 ) - 1 ) WWalksN G ) ) ) | 
						
							| 47 | 46 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) <-> ( x prefix ( N + 1 ) ) e. ( ( ( N + 1 ) - 1 ) WWalksN G ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) <-> ( x prefix ( N + 1 ) ) e. ( ( ( N + 1 ) - 1 ) WWalksN G ) ) ) | 
						
							| 49 | 41 48 | mpbird |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) ) | 
						
							| 50 | 1 | clwwlknbp |  |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) ) | 
						
							| 51 |  | simprl |  |-  ( ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( x ` 0 ) = X ) | 
						
							| 52 |  | simprr |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> x e. Word V ) | 
						
							| 53 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 54 | 5 53 | syl |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 55 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 56 | 55 | lep1d |  |-  ( N e. NN -> N <_ ( N + 1 ) ) | 
						
							| 57 |  | elfz2nn0 |  |-  ( N e. ( 0 ... ( N + 1 ) ) <-> ( N e. NN0 /\ ( N + 1 ) e. NN0 /\ N <_ ( N + 1 ) ) ) | 
						
							| 58 | 5 54 56 57 | syl3anbrc |  |-  ( N e. NN -> N e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 59 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 60 |  | addsubass |  |-  ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N + 2 ) - 1 ) = ( N + ( 2 - 1 ) ) ) | 
						
							| 61 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 62 | 61 | oveq2i |  |-  ( N + ( 2 - 1 ) ) = ( N + 1 ) | 
						
							| 63 | 60 62 | eqtrdi |  |-  ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N + 2 ) - 1 ) = ( N + 1 ) ) | 
						
							| 64 | 27 59 28 63 | syl3anc |  |-  ( N e. NN -> ( ( N + 2 ) - 1 ) = ( N + 1 ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( N e. NN -> ( 0 ... ( ( N + 2 ) - 1 ) ) = ( 0 ... ( N + 1 ) ) ) | 
						
							| 66 | 58 65 | eleqtrrd |  |-  ( N e. NN -> N e. ( 0 ... ( ( N + 2 ) - 1 ) ) ) | 
						
							| 67 |  | elfzp1b |  |-  ( ( N e. ZZ /\ ( N + 2 ) e. ZZ ) -> ( N e. ( 0 ... ( ( N + 2 ) - 1 ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) ) | 
						
							| 68 | 23 24 67 | syl2anc |  |-  ( N e. NN -> ( N e. ( 0 ... ( ( N + 2 ) - 1 ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) ) | 
						
							| 69 | 66 68 | mpbid |  |-  ( N e. NN -> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) | 
						
							| 71 |  | oveq2 |  |-  ( ( # ` x ) = ( N + 2 ) -> ( 1 ... ( # ` x ) ) = ( 1 ... ( N + 2 ) ) ) | 
						
							| 72 | 71 | eleq2d |  |-  ( ( # ` x ) = ( N + 2 ) -> ( ( N + 1 ) e. ( 1 ... ( # ` x ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) ) | 
						
							| 73 | 72 | ad2antrl |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( ( N + 1 ) e. ( 1 ... ( # ` x ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 2 ) ) ) ) | 
						
							| 74 | 70 73 | mpbird |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( N + 1 ) e. ( 1 ... ( # ` x ) ) ) | 
						
							| 75 |  | pfxfv0 |  |-  ( ( x e. Word V /\ ( N + 1 ) e. ( 1 ... ( # ` x ) ) ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 76 | 52 74 75 | syl2anc |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 77 | 76 | ex |  |-  ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( X e. V /\ N e. NN ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) ) | 
						
							| 79 | 78 | impcom |  |-  ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 80 | 79 | ad2antrl |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = ( x ` 0 ) ) | 
						
							| 81 |  | simpl |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( x ` 0 ) = X ) | 
						
							| 82 | 80 81 | eqtrd |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( x prefix ( N + 1 ) ) ` 0 ) = X ) | 
						
							| 83 |  | pfxfvlsw |  |-  ( ( x e. Word V /\ ( N + 1 ) e. ( 1 ... ( # ` x ) ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) = ( x ` ( ( N + 1 ) - 1 ) ) ) | 
						
							| 84 | 52 74 83 | syl2anc |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) = ( x ` ( ( N + 1 ) - 1 ) ) ) | 
						
							| 85 | 27 42 | syl |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 86 | 27 59 | pncand |  |-  ( N e. NN -> ( ( N + 2 ) - 2 ) = N ) | 
						
							| 87 | 85 86 | eqtr4d |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = ( ( N + 2 ) - 2 ) ) | 
						
							| 88 | 87 | fveq2d |  |-  ( N e. NN -> ( x ` ( ( N + 1 ) - 1 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( x ` ( ( N + 1 ) - 1 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) ) | 
						
							| 90 | 84 89 | eqtr2d |  |-  ( ( N e. NN /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( x ` ( ( N + 2 ) - 2 ) ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) | 
						
							| 91 | 90 | ex |  |-  ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x ` ( ( N + 2 ) - 2 ) ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 92 | 91 | adantl |  |-  ( ( X e. V /\ N e. NN ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x ` ( ( N + 2 ) - 2 ) ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) ) | 
						
							| 93 | 92 | impcom |  |-  ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) -> ( x ` ( ( N + 2 ) - 2 ) ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) | 
						
							| 94 | 93 | neeq1d |  |-  ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) -> ( ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) <-> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 95 | 94 | biimpcd |  |-  ( ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) -> ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) -> ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 97 | 96 | impcom |  |-  ( ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) | 
						
							| 99 |  | neeq2 |  |-  ( X = ( x ` 0 ) -> ( ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X <-> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 100 | 99 | eqcoms |  |-  ( ( x ` 0 ) = X -> ( ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X <-> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X <-> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= ( x ` 0 ) ) ) | 
						
							| 102 | 98 101 | mpbird |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) | 
						
							| 103 | 82 102 | jca |  |-  ( ( ( x ` 0 ) = X /\ ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) | 
						
							| 104 | 51 103 | mpancom |  |-  ( ( ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) /\ ( X e. V /\ N e. NN ) ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) | 
						
							| 105 | 104 | exp31 |  |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( X e. V /\ N e. NN ) -> ( ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 106 | 105 | com23 |  |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) -> ( ( X e. V /\ N e. NN ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 107 | 106 | ancoms |  |-  ( ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) -> ( ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) -> ( ( X e. V /\ N e. NN ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 108 | 50 107 | syl |  |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) -> ( ( X e. V /\ N e. NN ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 109 | 108 | imp |  |-  ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( X e. V /\ N e. NN ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 110 | 109 | com12 |  |-  ( ( X e. V /\ N e. NN ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 111 | 110 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 112 | 111 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) | 
						
							| 113 | 49 112 | jca |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 114 | 113 | ex |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 115 | 21 114 | sylbid |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 116 | 115 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 117 |  | 3simpc |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( X e. V /\ N e. NN ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( X e. V /\ N e. NN ) ) | 
						
							| 119 | 1 2 | numclwwlkovq |  |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 121 | 120 | eleq2d |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( X Q N ) <-> ( x prefix ( N + 1 ) ) e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
							| 122 |  | fveq1 |  |-  ( w = ( x prefix ( N + 1 ) ) -> ( w ` 0 ) = ( ( x prefix ( N + 1 ) ) ` 0 ) ) | 
						
							| 123 | 122 | eqeq1d |  |-  ( w = ( x prefix ( N + 1 ) ) -> ( ( w ` 0 ) = X <-> ( ( x prefix ( N + 1 ) ) ` 0 ) = X ) ) | 
						
							| 124 |  | fveq2 |  |-  ( w = ( x prefix ( N + 1 ) ) -> ( lastS ` w ) = ( lastS ` ( x prefix ( N + 1 ) ) ) ) | 
						
							| 125 | 124 | neeq1d |  |-  ( w = ( x prefix ( N + 1 ) ) -> ( ( lastS ` w ) =/= X <-> ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) | 
						
							| 126 | 123 125 | anbi12d |  |-  ( w = ( x prefix ( N + 1 ) ) -> ( ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) <-> ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 127 | 126 | elrab |  |-  ( ( x prefix ( N + 1 ) ) e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } <-> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) | 
						
							| 128 | 121 127 | bitrdi |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( ( x prefix ( N + 1 ) ) e. ( X Q N ) <-> ( ( x prefix ( N + 1 ) ) e. ( N WWalksN G ) /\ ( ( ( x prefix ( N + 1 ) ) ` 0 ) = X /\ ( lastS ` ( x prefix ( N + 1 ) ) ) =/= X ) ) ) ) | 
						
							| 129 | 116 128 | mpbird |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) e. ( X Q N ) ) | 
						
							| 130 | 129 4 | fmptd |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) --> ( X Q N ) ) |