| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk.v |
|
| 2 |
|
numclwwlk.q |
|
| 3 |
|
numclwwlk.h |
|
| 4 |
|
numclwwlk.r |
|
| 5 |
|
nnnn0 |
|
| 6 |
|
2z |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nn0pzuz |
|
| 9 |
5 7 8
|
syl2anc |
|
| 10 |
9
|
anim2i |
|
| 11 |
10
|
3adant1 |
|
| 12 |
3
|
numclwwlkovh |
|
| 13 |
12
|
eleq2d |
|
| 14 |
11 13
|
syl |
|
| 15 |
|
fveq1 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
|
fveq1 |
|
| 18 |
17 15
|
neeq12d |
|
| 19 |
16 18
|
anbi12d |
|
| 20 |
19
|
elrab |
|
| 21 |
14 20
|
bitrdi |
|
| 22 |
|
peano2nn |
|
| 23 |
|
nnz |
|
| 24 |
23 7
|
zaddcld |
|
| 25 |
|
uzid |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
nncn |
|
| 28 |
|
1cnd |
|
| 29 |
27 28 28
|
addassd |
|
| 30 |
|
1p1e2 |
|
| 31 |
30
|
a1i |
|
| 32 |
31
|
oveq2d |
|
| 33 |
29 32
|
eqtrd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
26 34
|
eleqtrrd |
|
| 36 |
22 35
|
jca |
|
| 37 |
36
|
3ad2ant3 |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simprl |
|
| 40 |
|
wwlksubclwwlk |
|
| 41 |
38 39 40
|
sylc |
|
| 42 |
|
pncan1 |
|
| 43 |
42
|
eqcomd |
|
| 44 |
27 43
|
syl |
|
| 45 |
44
|
oveq1d |
|
| 46 |
45
|
eleq2d |
|
| 47 |
46
|
3ad2ant3 |
|
| 48 |
47
|
adantr |
|
| 49 |
41 48
|
mpbird |
|
| 50 |
1
|
clwwlknbp |
|
| 51 |
|
simprl |
|
| 52 |
|
simprr |
|
| 53 |
|
peano2nn0 |
|
| 54 |
5 53
|
syl |
|
| 55 |
|
nnre |
|
| 56 |
55
|
lep1d |
|
| 57 |
|
elfz2nn0 |
|
| 58 |
5 54 56 57
|
syl3anbrc |
|
| 59 |
|
2cnd |
|
| 60 |
|
addsubass |
|
| 61 |
|
2m1e1 |
|
| 62 |
61
|
oveq2i |
|
| 63 |
60 62
|
eqtrdi |
|
| 64 |
27 59 28 63
|
syl3anc |
|
| 65 |
64
|
oveq2d |
|
| 66 |
58 65
|
eleqtrrd |
|
| 67 |
|
elfzp1b |
|
| 68 |
23 24 67
|
syl2anc |
|
| 69 |
66 68
|
mpbid |
|
| 70 |
69
|
adantr |
|
| 71 |
|
oveq2 |
|
| 72 |
71
|
eleq2d |
|
| 73 |
72
|
ad2antrl |
|
| 74 |
70 73
|
mpbird |
|
| 75 |
|
pfxfv0 |
|
| 76 |
52 74 75
|
syl2anc |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
adantl |
|
| 79 |
78
|
impcom |
|
| 80 |
79
|
ad2antrl |
|
| 81 |
|
simpl |
|
| 82 |
80 81
|
eqtrd |
|
| 83 |
|
pfxfvlsw |
|
| 84 |
52 74 83
|
syl2anc |
|
| 85 |
27 42
|
syl |
|
| 86 |
27 59
|
pncand |
|
| 87 |
85 86
|
eqtr4d |
|
| 88 |
87
|
fveq2d |
|
| 89 |
88
|
adantr |
|
| 90 |
84 89
|
eqtr2d |
|
| 91 |
90
|
ex |
|
| 92 |
91
|
adantl |
|
| 93 |
92
|
impcom |
|
| 94 |
93
|
neeq1d |
|
| 95 |
94
|
biimpcd |
|
| 96 |
95
|
adantl |
|
| 97 |
96
|
impcom |
|
| 98 |
97
|
adantl |
|
| 99 |
|
neeq2 |
|
| 100 |
99
|
eqcoms |
|
| 101 |
100
|
adantr |
|
| 102 |
98 101
|
mpbird |
|
| 103 |
82 102
|
jca |
|
| 104 |
51 103
|
mpancom |
|
| 105 |
104
|
exp31 |
|
| 106 |
105
|
com23 |
|
| 107 |
106
|
ancoms |
|
| 108 |
50 107
|
syl |
|
| 109 |
108
|
imp |
|
| 110 |
109
|
com12 |
|
| 111 |
110
|
3adant1 |
|
| 112 |
111
|
imp |
|
| 113 |
49 112
|
jca |
|
| 114 |
113
|
ex |
|
| 115 |
21 114
|
sylbid |
|
| 116 |
115
|
imp |
|
| 117 |
|
3simpc |
|
| 118 |
117
|
adantr |
|
| 119 |
1 2
|
numclwwlkovq |
|
| 120 |
118 119
|
syl |
|
| 121 |
120
|
eleq2d |
|
| 122 |
|
fveq1 |
|
| 123 |
122
|
eqeq1d |
|
| 124 |
|
fveq2 |
|
| 125 |
124
|
neeq1d |
|
| 126 |
123 125
|
anbi12d |
|
| 127 |
126
|
elrab |
|
| 128 |
121 127
|
bitrdi |
|
| 129 |
116 128
|
mpbird |
|
| 130 |
129 4
|
fmptd |
|