Metamath Proof Explorer


Theorem numclwwlkovq

Description: Value of operation Q , mapping a vertex v and a positive integer n to the not closed walks v(0) ... v(n) of length n from a fixed vertex v = v(0). "Not closed" means v(n) =/= v(0). Remark: n e. NN0 would not be useful: numclwwlkqhash would not hold, because ( K ^ 0 ) = 1 ! (Contributed by Alexander van der Vekens, 27-Sep-2018) (Revised by AV, 30-May-2021)

Ref Expression
Hypotheses numclwwlk.v V=VtxG
numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
Assertion numclwwlkovq XVNXQN=wNWWalksNG|w0=XlastSwX

Proof

Step Hyp Ref Expression
1 numclwwlk.v V=VtxG
2 numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
3 oveq1 n=NnWWalksNG=NWWalksNG
4 3 adantl v=Xn=NnWWalksNG=NWWalksNG
5 eqeq2 v=Xw0=vw0=X
6 neeq2 v=XlastSwvlastSwX
7 5 6 anbi12d v=Xw0=vlastSwvw0=XlastSwX
8 7 adantr v=Xn=Nw0=vlastSwvw0=XlastSwX
9 4 8 rabeqbidv v=Xn=NwnWWalksNG|w0=vlastSwv=wNWWalksNG|w0=XlastSwX
10 ovex NWWalksNGV
11 10 rabex wNWWalksNG|w0=XlastSwXV
12 9 2 11 ovmpoa XVNXQN=wNWWalksNG|w0=XlastSwX