Metamath Proof Explorer


Theorem numclwwlkqhash

Description: In a K-regular graph, the size of the set of walks of length N starting with a fixed vertex X and ending not at this vertex is the difference between K to the power of N and the size of the set of closed walks of length N on vertex X . (Contributed by Alexander van der Vekens, 30-Sep-2018) (Revised by AV, 30-May-2021) (Revised by AV, 5-Mar-2022) (Proof shortened by AV, 7-Jul-2022)

Ref Expression
Hypotheses numclwwlk.v V=VtxG
numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
Assertion numclwwlkqhash GRegUSGraphKVFinXVNXQN=KNXClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 numclwwlk.v V=VtxG
2 numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
3 1 2 numclwwlkovq XVNXQN=wNWWalksNG|w0=XlastSwX
4 3 adantl GRegUSGraphKVFinXVNXQN=wNWWalksNG|w0=XlastSwX
5 4 fveq2d GRegUSGraphKVFinXVNXQN=wNWWalksNG|w0=XlastSwX
6 nnnn0 NN0
7 eqid wNWWalksNG|w0=XlastSwX=wNWWalksNG|w0=XlastSwX
8 eqid XNWWalksNOnGX=XNWWalksNOnGX
9 7 8 1 clwwlknclwwlkdifnum GRegUSGraphKVFinXVN0wNWWalksNG|w0=XlastSwX=KNXNWWalksNOnGX
10 6 9 sylanr2 GRegUSGraphKVFinXVNwNWWalksNG|w0=XlastSwX=KNXNWWalksNOnGX
11 1 iswwlksnon XNWWalksNOnGX=wNWWalksNG|w0=XwN=X
12 wwlknlsw wNWWalksNGwN=lastSw
13 eqcom w0=XX=w0
14 13 biimpi w0=XX=w0
15 12 14 eqeqan12d wNWWalksNGw0=XwN=XlastSw=w0
16 15 pm5.32da wNWWalksNGw0=XwN=Xw0=XlastSw=w0
17 16 biancomd wNWWalksNGw0=XwN=XlastSw=w0w0=X
18 17 rabbiia wNWWalksNG|w0=XwN=X=wNWWalksNG|lastSw=w0w0=X
19 11 18 eqtri XNWWalksNOnGX=wNWWalksNG|lastSw=w0w0=X
20 19 fveq2i XNWWalksNOnGX=wNWWalksNG|lastSw=w0w0=X
21 20 a1i GRegUSGraphKVFinXVNXNWWalksNOnGX=wNWWalksNG|lastSw=w0w0=X
22 21 oveq2d GRegUSGraphKVFinXVNKNXNWWalksNOnGX=KNwNWWalksNG|lastSw=w0w0=X
23 10 22 eqtrd GRegUSGraphKVFinXVNwNWWalksNG|w0=XlastSwX=KNwNWWalksNG|lastSw=w0w0=X
24 ovex NWWalksNGV
25 24 rabex wNWWalksNG|lastSw=w0w0=XV
26 clwwlkvbij XVNff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGN
27 26 adantl GRegUSGraphKVFinXVNff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGN
28 hasheqf1oi wNWWalksNG|lastSw=w0w0=XVff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGNwNWWalksNG|lastSw=w0w0=X=XClWWalksNOnGN
29 25 27 28 mpsyl GRegUSGraphKVFinXVNwNWWalksNG|lastSw=w0w0=X=XClWWalksNOnGN
30 29 oveq2d GRegUSGraphKVFinXVNKNwNWWalksNG|lastSw=w0w0=X=KNXClWWalksNOnGN
31 5 23 30 3eqtrd GRegUSGraphKVFinXVNXQN=KNXClWWalksNOnGN