| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwwlk.q | ⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } ) | 
						
							| 3 | 1 2 | numclwwlkovq | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) ) | 
						
							| 6 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | eqid | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } | 
						
							| 8 |  | eqid | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) | 
						
							| 9 | 7 8 1 | clwwlknclwwlkdifnum | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) ) ) | 
						
							| 10 | 6 9 | sylanr2 | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) ) ) | 
						
							| 11 | 1 | iswwlksnon | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } | 
						
							| 12 |  | wwlknlsw | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑤 ‘ 𝑁 )  =  ( lastS ‘ 𝑤 ) ) | 
						
							| 13 |  | eqcom | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  𝑋  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 14 | 13 | biimpi | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  𝑋  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 15 | 12 14 | eqeqan12d | ⊢ ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ↔  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) ) | 
						
							| 16 | 15 | pm5.32da | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) ) ) | 
						
							| 17 | 16 | biancomd | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 18 | 17 | rabbiia | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 19 | 11 18 | eqtri | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 20 | 19 | fveq2i | ⊢ ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) | 
						
							| 21 | 20 | a1i | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) ) | 
						
							| 23 | 10 22 | eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) ) | 
						
							| 24 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 25 | 24 | rabex | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ∈  V | 
						
							| 26 |  | clwwlkvbij | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 28 |  | hasheqf1oi | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ∈  V  →  ( ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) ) | 
						
							| 29 | 25 27 28 | mpsyl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) ) | 
						
							| 31 | 5 23 30 | 3eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) ) |