| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknclwwlkdif.a | ⊢ 𝐴  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } | 
						
							| 2 |  | clwwlknclwwlkdif.b | ⊢ 𝐵  =  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) | 
						
							| 3 |  | clwwlknclwwlkdifnum.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 5 | 1 2 4 | clwwlknclwwlkdif | ⊢ 𝐴  =  ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) | 
						
							| 6 | 5 | fveq2i | ⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) ) ) | 
						
							| 8 | 3 | eleq1i | ⊢ ( 𝑉  ∈  Fin  ↔  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝑉  ∈  Fin  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 12 |  | wwlksnfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin ) | 
						
							| 13 |  | rabfi | ⊢ ( ( 𝑁  WWalksN  𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin ) | 
						
							| 15 | 3 | iswwlksnon | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } | 
						
							| 16 |  | ancom | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 17 | 16 | rabbii | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 18 | 15 17 | eqtri | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) | 
						
							| 20 | 2 19 | eqtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝐵  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 23 | 22 | ss2rabi | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 24 | 20 23 | eqsstrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 26 |  | hashssdif | ⊢ ( ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin  ∧  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  →  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) )  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 27 | 14 25 26 | syl2anc | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) )  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 28 |  | simpl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝑉  ∈  Fin ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑉  ∈  Fin ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑋  ∈  𝑉 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 36 | 3 | rusgrnumwwlkg | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  =  ( 𝐾 ↑ 𝑁 ) ) | 
						
							| 37 | 29 31 33 35 36 | syl13anc | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  =  ( 𝐾 ↑ 𝑁 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 39 | 7 27 38 | 3eqtrd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ 𝐵 ) ) ) |