| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknclwwlkdif.a |  | 
						
							| 2 |  | clwwlknclwwlkdif.b |  | 
						
							| 3 |  | clwwlknclwwlkdifnum.v |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 2 4 | clwwlknclwwlkdif |  | 
						
							| 6 | 5 | fveq2i |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 | 3 | eleq1i |  | 
						
							| 9 | 8 | biimpi |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | wwlksnfi |  | 
						
							| 13 |  | rabfi |  | 
						
							| 14 | 11 12 13 | 3syl |  | 
						
							| 15 | 3 | iswwlksnon |  | 
						
							| 16 |  | ancom |  | 
						
							| 17 | 16 | rabbii |  | 
						
							| 18 | 15 17 | eqtri |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 2 19 | eqtrid |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 22 | ss2rabi |  | 
						
							| 24 | 20 23 | eqsstrdi |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | hashssdif |  | 
						
							| 27 | 14 25 26 | syl2anc |  | 
						
							| 28 |  | simpl |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | simpl |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 3 | rusgrnumwwlkg |  | 
						
							| 37 | 29 31 33 35 36 | syl13anc |  | 
						
							| 38 | 37 | oveq1d |  | 
						
							| 39 | 7 27 38 | 3eqtrd |  |