Metamath Proof Explorer


Theorem wwlksnfi

Description: The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018) (Revised by AV, 19-Apr-2021) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wwlksnfi VtxGFinNWWalksNGFin

Proof

Step Hyp Ref Expression
1 wrdnfi VtxGFinwWordVtxG|w=N+1Fin
2 simpr wi0..^w1wiwi+1EdgGw=N+1w=N+1
3 2 a1i wWordVtxGwi0..^w1wiwi+1EdgGw=N+1w=N+1
4 3 ss2rabi wWordVtxG|wi0..^w1wiwi+1EdgGw=N+1wWordVtxG|w=N+1
5 4 a1i VtxGFinwWordVtxG|wi0..^w1wiwi+1EdgGw=N+1wWordVtxG|w=N+1
6 1 5 ssfid VtxGFinwWordVtxG|wi0..^w1wiwi+1EdgGw=N+1Fin
7 wwlksn N0NWWalksNG=wWWalksG|w=N+1
8 df-rab wWWalksG|w=N+1=w|wWWalksGw=N+1
9 7 8 eqtrdi N0NWWalksNG=w|wWWalksGw=N+1
10 3anan12 wwWordVtxGi0..^w1wiwi+1EdgGwWordVtxGwi0..^w1wiwi+1EdgG
11 10 anbi1i wwWordVtxGi0..^w1wiwi+1EdgGw=N+1wWordVtxGwi0..^w1wiwi+1EdgGw=N+1
12 anass wWordVtxGwi0..^w1wiwi+1EdgGw=N+1wWordVtxGwi0..^w1wiwi+1EdgGw=N+1
13 11 12 bitri wwWordVtxGi0..^w1wiwi+1EdgGw=N+1wWordVtxGwi0..^w1wiwi+1EdgGw=N+1
14 13 abbii w|wwWordVtxGi0..^w1wiwi+1EdgGw=N+1=w|wWordVtxGwi0..^w1wiwi+1EdgGw=N+1
15 eqid VtxG=VtxG
16 eqid EdgG=EdgG
17 15 16 iswwlks wWWalksGwwWordVtxGi0..^w1wiwi+1EdgG
18 17 anbi1i wWWalksGw=N+1wwWordVtxGi0..^w1wiwi+1EdgGw=N+1
19 18 abbii w|wWWalksGw=N+1=w|wwWordVtxGi0..^w1wiwi+1EdgGw=N+1
20 df-rab wWordVtxG|wi0..^w1wiwi+1EdgGw=N+1=w|wWordVtxGwi0..^w1wiwi+1EdgGw=N+1
21 14 19 20 3eqtr4i w|wWWalksGw=N+1=wWordVtxG|wi0..^w1wiwi+1EdgGw=N+1
22 9 21 eqtrdi N0NWWalksNG=wWordVtxG|wi0..^w1wiwi+1EdgGw=N+1
23 22 eleq1d N0NWWalksNGFinwWordVtxG|wi0..^w1wiwi+1EdgGw=N+1Fin
24 6 23 imbitrrid N0VtxGFinNWWalksNGFin
25 df-nel N0¬N0
26 25 biimpri ¬N0N0
27 26 olcd ¬N0GVN0
28 wwlksnndef GVN0NWWalksNG=
29 27 28 syl ¬N0NWWalksNG=
30 0fin Fin
31 29 30 eqeltrdi ¬N0NWWalksNGFin
32 31 a1d ¬N0VtxGFinNWWalksNGFin
33 24 32 pm2.61i VtxGFinNWWalksNGFin