| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknclwwlkdif.a |  |-  A = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } | 
						
							| 2 |  | clwwlknclwwlkdif.b |  |-  B = ( X ( N WWalksNOn G ) X ) | 
						
							| 3 |  | clwwlknclwwlkdifnum.v |  |-  V = ( Vtx ` G ) | 
						
							| 4 |  | eqid |  |-  { w e. ( N WWalksN G ) | ( w ` 0 ) = X } = { w e. ( N WWalksN G ) | ( w ` 0 ) = X } | 
						
							| 5 | 1 2 4 | clwwlknclwwlkdif |  |-  A = ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) | 
						
							| 6 | 5 | fveq2i |  |-  ( # ` A ) = ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` A ) = ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) ) | 
						
							| 8 | 3 | eleq1i |  |-  ( V e. Fin <-> ( Vtx ` G ) e. Fin ) | 
						
							| 9 | 8 | biimpi |  |-  ( V e. Fin -> ( Vtx ` G ) e. Fin ) | 
						
							| 10 | 9 | adantl |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> ( Vtx ` G ) e. Fin ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( Vtx ` G ) e. Fin ) | 
						
							| 12 |  | wwlksnfi |  |-  ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) | 
						
							| 13 |  | rabfi |  |-  ( ( N WWalksN G ) e. Fin -> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin ) | 
						
							| 15 | 3 | iswwlksnon |  |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } | 
						
							| 16 |  | ancom |  |-  ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( w ` N ) = X /\ ( w ` 0 ) = X ) ) | 
						
							| 17 | 16 | rabbii |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } | 
						
							| 18 | 15 17 | eqtri |  |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } | 
						
							| 19 | 18 | a1i |  |-  ( ( X e. V /\ N e. NN0 ) -> ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } ) | 
						
							| 20 | 2 19 | eqtrid |  |-  ( ( X e. V /\ N e. NN0 ) -> B = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } ) | 
						
							| 21 |  | simpr |  |-  ( ( ( w ` N ) = X /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) | 
						
							| 22 | 21 | a1i |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` N ) = X /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) ) | 
						
							| 23 | 22 | ss2rabi |  |-  { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } | 
						
							| 24 | 20 23 | eqsstrdi |  |-  ( ( X e. V /\ N e. NN0 ) -> B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 26 |  | hashssdif |  |-  ( ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin /\ B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) -> ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) = ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) ) | 
						
							| 27 | 14 25 26 | syl2anc |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) = ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) ) | 
						
							| 28 |  | simpl |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G RegUSGraph K ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> G RegUSGraph K ) | 
						
							| 30 |  | simpr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> V e. Fin ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> V e. Fin ) | 
						
							| 32 |  | simpl |  |-  ( ( X e. V /\ N e. NN0 ) -> X e. V ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> X e. V ) | 
						
							| 34 |  | simpr |  |-  ( ( X e. V /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> N e. NN0 ) | 
						
							| 36 | 3 | rusgrnumwwlkg |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) = ( K ^ N ) ) | 
						
							| 37 | 29 31 33 35 36 | syl13anc |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) = ( K ^ N ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) = ( ( K ^ N ) - ( # ` B ) ) ) | 
						
							| 39 | 7 27 38 | 3eqtrd |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` A ) = ( ( K ^ N ) - ( # ` B ) ) ) |