| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknclwwlkdif.a |  |-  A = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } | 
						
							| 2 |  | clwwlknclwwlkdif.b |  |-  B = ( X ( N WWalksNOn G ) X ) | 
						
							| 3 |  | clwwlknclwwlkdif.c |  |-  C = { w e. ( N WWalksN G ) | ( w ` 0 ) = X } | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 | 4 | iswwlksnon |  |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } | 
						
							| 6 | 2 5 | eqtri |  |-  B = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } | 
						
							| 7 | 3 6 | difeq12i |  |-  ( C \ B ) = ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } ) | 
						
							| 8 |  | difrab |  |-  ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) } | 
						
							| 9 |  | annotanannot |  |-  ( ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) <-> ( ( w ` 0 ) = X /\ -. ( w ` N ) = X ) ) | 
						
							| 10 |  | df-ne |  |-  ( ( w ` N ) =/= X <-> -. ( w ` N ) = X ) | 
						
							| 11 |  | wwlknlsw |  |-  ( w e. ( N WWalksN G ) -> ( w ` N ) = ( lastS ` w ) ) | 
						
							| 12 | 11 | neeq1d |  |-  ( w e. ( N WWalksN G ) -> ( ( w ` N ) =/= X <-> ( lastS ` w ) =/= X ) ) | 
						
							| 13 | 10 12 | bitr3id |  |-  ( w e. ( N WWalksN G ) -> ( -. ( w ` N ) = X <-> ( lastS ` w ) =/= X ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ -. ( w ` N ) = X ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) | 
						
							| 15 | 9 14 | bitrid |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) | 
						
							| 16 | 15 | rabbiia |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } | 
						
							| 17 | 7 8 16 | 3eqtrri |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } = ( C \ B ) | 
						
							| 18 | 1 17 | eqtri |  |-  A = ( C \ B ) |