| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknbp1 |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) | 
						
							| 2 |  | lsw |  |-  ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 4 |  | oveq1 |  |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 6 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 7 |  | pncan1 |  |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 10 | 5 9 | eqtrd |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = N ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` N ) ) | 
						
							| 12 | 3 11 | eqtr2d |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W ` N ) = ( lastS ` W ) ) | 
						
							| 13 | 1 12 | syl |  |-  ( W e. ( N WWalksN G ) -> ( W ` N ) = ( lastS ` W ) ) |