| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq12 |  |-  ( ( n = N /\ g = G ) -> ( n WWalksN g ) = ( N WWalksN G ) ) | 
						
							| 2 |  | fveq2 |  |-  ( g = G -> ( SPaths ` g ) = ( SPaths ` G ) ) | 
						
							| 3 | 2 | breqd |  |-  ( g = G -> ( f ( SPaths ` g ) w <-> f ( SPaths ` G ) w ) ) | 
						
							| 4 | 3 | exbidv |  |-  ( g = G -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( n = N /\ g = G ) -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) | 
						
							| 6 | 1 5 | rabeqbidv |  |-  ( ( n = N /\ g = G ) -> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) | 
						
							| 7 |  | df-wspthsn |  |-  WSPathsN = ( n e. NN0 , g e. _V |-> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } ) | 
						
							| 8 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 9 | 8 | rabex |  |-  { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } e. _V | 
						
							| 10 | 6 7 9 | ovmpoa |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) | 
						
							| 11 | 7 | mpondm0 |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = (/) ) | 
						
							| 12 |  | df-wwlksn |  |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
						
							| 13 | 12 | mpondm0 |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = (/) ) | 
						
							| 14 | 13 | rabeqdv |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = { w e. (/) | E. f f ( SPaths ` G ) w } ) | 
						
							| 15 |  | rab0 |  |-  { w e. (/) | E. f f ( SPaths ` G ) w } = (/) | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = (/) ) | 
						
							| 17 | 11 16 | eqtr4d |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) | 
						
							| 18 | 10 17 | pm2.61i |  |-  ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } |