Metamath Proof Explorer


Theorem wspthsn

Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion wspthsn ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }

Proof

Step Hyp Ref Expression
1 oveq12 ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( 𝑛 WWalksN 𝑔 ) = ( 𝑁 WWalksN 𝐺 ) )
2 fveq2 ( 𝑔 = 𝐺 → ( SPaths ‘ 𝑔 ) = ( SPaths ‘ 𝐺 ) )
3 2 breqd ( 𝑔 = 𝐺 → ( 𝑓 ( SPaths ‘ 𝑔 ) 𝑤𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) )
4 3 exbidv ( 𝑔 = 𝐺 → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) )
5 4 adantl ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) )
6 1 5 rabeqbidv ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } )
7 df-wspthsn WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )
8 ovex ( 𝑁 WWalksN 𝐺 ) ∈ V
9 8 rabex { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ∈ V
10 6 7 9 ovmpoa ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } )
11 7 mpondm0 ( ¬ ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = ∅ )
12 df-wwlksn WWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( WWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑛 + 1 ) } )
13 12 mpondm0 ( ¬ ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → ( 𝑁 WWalksN 𝐺 ) = ∅ )
14 13 rabeqdv ( ¬ ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } )
15 rab0 { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅
16 14 15 eqtrdi ( ¬ ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ )
17 11 16 eqtr4d ( ¬ ( 𝑁 ∈ ℕ0𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } )
18 10 17 pm2.61i ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }